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Knowledges concerning the correlations of the late Tortonian to early Messinian time lap as well as
the suggestion of a possible Messinian GSSP have considerably increased during the last few years (Tab. 1).
Advances have occurred for all major correlation tools (radiocronometry, magnetostratigraphy,
cyclostratigraphy and astrochronometry), both at the general level (new calibrations of oceanic magnetic
anomalies) and in the study of continuous sections on land and in the deep sea.

Radiochronometry

In the early ‘60, the chronometric estimate of the T/M boundary had a major jump from 13 Ma
(Kulp 1960, 1961 based on radiometric datings of the north American “Hemphillian” mammal faunas
poorly correlated with the regional Paratethyan Pontian stage) to about 7 Ma (PTS 1964, based on the
intrusion age of the Elba granite according to Eberhardt and Ferrara |
fluctuated from 5.6 t0 6.5 around a modal figure of about 6.2 Ma. The first direct K/Ar dating of many fatest
Tortonian tephras intercalated in newly discovered, continuous, biostratigraphically well studied sections of
the Northern Apennines suggested an extrapolated age of 7.26+0.]1 Ma for the T/M boundary related to the
FAD of the G. conomiozea Zone (Vaietal, 1992, 1993). Ages consistent with the one above have also been
obtained from correlative tephras in the central Apennine (A. Deino in Coccioni et al., 1992, and Cosentino,
(pers. Com. 1994). Ar/Ar datings of the same latest Tortonian and of new early Messinian tephras from the
Northern Apennines have bracketed the T/M boundary quite close to 7.15 Ma (Laurenzi et al., 1995).
Almost the same results have been obtained in other sections of the Northern Apennines (Odin et al., 1995).
Based on these results, the recent Geological Tima Scale by Odin (1994) suggests an age of 7.1 Ma with
approximation of 0.3 for the Messinian base. Also the first preliminary results from Ar/Ar dating of some
ash beds intercalated in the Metochia section on Gadvos and in the Faneromeni and Kastellj sections in
Crete (Hilgen pers. com. 1995) seems to be consistent with the above results,

962). Until recently, the same estimate

Magnetostratigraphy

The new calibrations of the oceanic magnetic anomalies (Cande & Kent, 1992, 1995) have
considerably icreased the ages of all polarity units in the Pleistocene to late Neogene in comparison with the
figures of the previous calibration (Berggren et al., 1985). The interpolated age of the T/M boundary would
be 6.925 following the scale of Cande & Kent (1992). The revised version of the geomagnetic polarity time
scale according to Baksi (1993) and Cande & Kent (1995) suggest an interpolated age of 7.03and 7.11 Ma
respectively for the same T/M boundary. On land, excellent magnetostratigraphic results have been obtained
in the Crete sections (Krijgsman et al., 1994; Krijgsman et al, 1995, MIOMAR vol.). There, the T/M
boundary (related to the First Regular Occurrence of the G. conomiozea group) is contained within the short
reversed subchron 3Br.1r. These revised and much more detailed studies have considerably improved the
previous magnetostratigraphic interpretation of the Crete sections, from which a calibration of the T/M
boundary at 5.6 Ma was first derived (Langereis, 1984).

Useful magnetostratigraphic results have also been obtained in the lower part of the Monte Tondo
section (Northern Apennines) by Calieri et al. (1992) and by Negri & Vigliotti (1995). Also here, the T/M
boundary (FAD of conomiozea) is contained within a reversed interval, as in most of the sections on land
and in the deep sea studied so far. Few exceptions are Leg 107 in the Mediterranean (Channel et al., 1990;
Glagon et al., 1990) and the Atlantic Morocco (Benson & Rakic-El Bied, 1991: Hodell et al,, 1994) due to
uncertain polarity assessment and different criteria of establishing species range. Less convincing is the
stratigraphic and magnetostratigraphic interpretation of the Sorbas section (Gauthier et al., 1994), where the

planktic G.conomiozea first occurrence (again in Chron 3Bn) might be controlled by the sh

arp facies jump
from littoral bioclastic limestone and sand to bathyal marls.
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Recently, a very detailed palaeomagnetic resampling of the Monte del Casino section (Northern
Apennines), containing most of the tephras dated by Vai et al., (1992, 1993) and Laurenzi et al. (1995), has
been performed by Hilgen, Lourens and Krijgsman. The study is in progress.

Cyclostratigraphy

Very detailed measurements of magnetic susceptibility have proven to be the most reliable tool in
detecting lithoc-ycles which can be missed by visual inspection. Alternating calcium carbonate- and/or
organic matter-rich and poor couplets (light and dark coloured mudstones) are impressively developed in
many T/M sections especially in the Mediterranean. Many cyclostratigraphic researches, including field
surveying of cycles, isotope analysis of foraminiferal tests, geochemical fluctuations, and rythmic ’
distribution of climatically sensitive foraminifera species are in progress, in press or published, according to
the followin partial list:

1) Dinelli & Tateo (1993), geochemical and mineralogical data, Northern Apennines sections; 2) Calieri
(1992): planktic foraminifera cyclycity, N. Apennines sections; 3) Hodell et al. (1994): benthic foraminifera
stable isotope stages, on land Moroccan core; 4) Krijgsman et al. (1994):Crete sections; 5) Vai (1995): N.
Apennines sections; 6) Ferretti & Terzi: stable isotope and organic matter, N. Apennines sections; 7)
Sprovieri: foraminifera palaeoclimatical cyclicity, Sicily sections.

Astrochronometry

Astronomical time scales are quite firmly established for the last 6 Ma or so (Shackleton et al.,
1990, 1995; Hilgen, 1991a, 1991b; Tiedeman et al., 1994) They are based on the calibration of high
frequency sedimentation cycles, or related cyclic variations, to computed time series of the quasi periodic
variations of the Earth’s orbit. The early tuning attempts for the late Pleitocene were performed by Cesare
Emiliani who recently died (July 20, 1995). The astronomical time scale deviates from earlier time scales
based on both magnetostratigraphic interpolation and K/Ar dating; it has been confirmed by Ar/Ar single
crystal laser dating (Renne et al., 1994). It has been successfully applied also in palaeoclimatic studies
(Lourens et al., 1992). The first attempts at extending the astronomical time scale back in time into the
Miocene have been made by Shackleton et al. (1994) with the astronomical tuning of GRAPE records of
ODP Leg 138 between 6 and 10 Ma, and by Krijgsman et al. (1994) calculating a duration of the late
Miocene cyclic sequence of Crete as controlled by the precession period.
A direct calibration to astronomical target curves of the litho-cycles correlated from Crete to Gadvos and
Sicily is proposed by Hilgen et al. (1995). The resulting time scale (see enclosed figs. 1-2) is also compared
with 1) the most recent G(eomagnetic) P(olarity) T(ime) S(cale) of Cande & Kent (1995) and of Shackleton
et al.(1995); 2) accurate Ar/Ar datings as those by Vaj et al.(1993) and Laurenzi et al.(1995), and 3) the

number of litho-cycles in the younger (hyper- and hypohaline) part of the peri-Adriatic and peri-lonian
Messinian (Vai, 1995) (see enclosed figs. 3-4).
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Table 1. Chronometric age calibration of the Tortonian/Messinian boundary in the last decades.

Author Ma Calibration tool
Evernden et al., 1961 >~12 radiometric
Kulp, 1961 >~13 “
Eberhardt & Ferrara, 1962 >~7 «

PTS (Harland et al.) 1964 >~7 “

Charlot et al., 1968; Choubert et al., 1968 6.5 to 8.0

“®

Ryan et al., 1974 (conomiozea FAD) 6.2 magnetostratigraphic

“ (T/M boundary) 6.6 “
Harland et al., 1982 6.2 «
Langereis et al., 1984 5.6 «
Berggren et al., 1985 6.5 “
Hsii, 1986 6.2 +0.1 “
IUGS 1989 6.2 “
Harland et al., 1990 6.7 ¢
Odin, 1990 6.5 radiometric
Vaietal, 1992 <7.37%0.13 radiometric (K/Ar)
Cande & Kent, 1992 6.90 to 6.95 magnetostratigraphic
Vai et al.,, 1993 7.26x0.1 radiometric (K/Ar + Ar/Ar)
Baksi, 1993 7.03 magnetostratigraphic
Krijgsman et al., 1994 7.24 astrochronometric
Odin, 1994 7.12£0.3 radiometric
Cande & Kent, 1995 7.09to 7.13 magnetostratigraphic
Laurenzi et al., 1995 7.15+£0.04 radiometric (Ar/Ar)
Laurenzi & Montanari 7.174£0.06 “

Caption to figures in next pages

Fig. 1. Integrated magnetostratigraphic, biostratigraphic and cyclostratigraphic framework in the
Mediterranean (after Hilgen et al., 1995 in press).

Fig. 2 Third-order correlations of individual sedimentation cycles to precession minima and of alternatingly
thick/thin sapropel-cycles to interference patterns of precession and obliquity (after Hilgen et al., 1955 in
press).

Fig. 3. Chronostratigraphic, magnetostratigraphic, cyclostratigraphic and radiometric framework of the
Messinian formations and depositional sequences in the Northern Apennines (after Vai, 1995 in press).

Fig. 4. Preliminary cyclostratigraphic characterization of the late Tortonian-early Messinian euxinic shale
formation, Romagna Apennine (after Vai, 1995 in press).
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